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0. ABSTRACT

Multidimensional Wilson-Hilferty3-2t transformations support Gaussian approxi-

mations to certain joint distributions of quadratic forms in Gaussian variables. Central and

noncentral distributions are studied and applications are noted. Parameters of the approx-

imating distributions are given up to terms of order ?(v--) in the degrees of freedom v.

Numerical studies validate using these approximation4 over a range of parameters for an

essential subclass of the distributions. )

I. INTRODUCTION

Developments in statistics and applied probability often entail joint distributions of

definite quadratic forms in Gaussian variables, either in small samples or asymptotically.

Examples include linear statistical models 1101, the ballistics of multiple weapons systems

141, sitnal detection in multichannel receivers 1251, and bone lengths determined in vivo using

X-ray stereography (261,1281 and (291). Topics in large-sample theory include limiting joint

distributions of likelihood ratios, of Pearson s 1271 ,X statistics for categorical data 1121, and

of Friedman's 151 x; statistics in two-way data without normality (1131 and 1141). Further

details are given subsequently, and other examples could be cited.

Distributions of these types include multidimensional chi-squared and Rayleigh dis-

tributions (181, 191, 1101, 1181, [191, 1201, 1221, 1241, and (301), often depending on an excess

of parameters. Series expansions for their distribution functions typically are intractable in

dimensions greater than two; convergence properties of these series may not be known 1191;

and series known to converge may do so slowly. Viable approximations to these distrib-

utions are clearly needed. Among alternatives, multivariate Edgeworth expansions 131 are

often flawed by inadequacy of the leading term and failure of the sum of the first few terms

to be positive. Approximations from the Pearson system, in wide use in the univariate



case, hold scant promise since little is known beyond the bivariate case ([18], pp. 6-9).

Alternatively, the normalizing transformations of Wilson and Hilferty 1321 appear promis-

ing, as these give remarkable accuracy for a single quadratic form over a wide range of pa-

rameters (1161, 1171 and (231).

Here we develop multivariate transformations leading to Gaussian approximations

not depending on excessive parameters, requiring only moments of first and second orders.

To be precise, let [Q, ... , Q,] be standardized quadratic forms in Gaussian variables having

v degrees of freedom whose limit as v -- cc is jointly Gaussian. Lemma I assures that

Q7, 1 also has a Gaussian limit for every {a e (0,1]; 1 j r). Extending devel-

opments in 1161, we consider multivariate power transformations [Qj -- (Q,)'j; 1 <j< r),

choosing {a, ... a,) so as to accelerate the convergence of certain moment sequences to

those of Gaussian variables. Parameters of the approximating distributions are given up to

terms of order o(v-3), and the approximation is studied numerically in selected cases.

2. PRELIMINARIES

2.1 Notation. Standard spaces include the Euclidean n-space Rn, the space F, of real

(n x p) matrices, the symmetric (p x p) matrices S, and the cone S, c S, of positive semi-

definite varieties. The half-open unit cube in R- is denoted by D(n) =

(0, 1] x (0, 1] x ... x (0, 1]. Matrix operations include transposition (4 -. 4') and inversion

(B - B-1). Special arrays are I., Q, 4 x B?, and Diag(A& ... , A,), denoting respectively the

(n x n) identity, a matrix of zeros, the direct product [ajB], and a block-diagonal matrix,

in addition to the unit vector I, = [I, ..., I]' e Rm.

2.2 Some Basic Distributions. .(Z) denotes the law of distribution of Z. The joint

moments of X e P are denoted by 4' ,, its central moments by t ,, and its joint

cumulants by K,, all of order s = s, + "'" + sp. We consider the probability density func-

tion (pd), the cumulative distribution function (cdJ), and the cumulant generating function

(cgf) of Z. Gaussian laws on RP and F,,,, are denoted by N,(g, ;) and N,,,(.1, U), respec- k

tively, where A e RP and M e F,, are arrays of means, and Z e S.; and F e S; are arrays of

dispersion parameters. The Wishart distribution on S;, having v degrees of freedom and

the matrices 1 and E) of scale and noncentrality parameters in S;, is denoted by

W,(v, 1, 9). In particular, if Ya(Y) = N,,.,(j1, x Z), then .T(Y'Y) = WP(n, 1, M'M).
For

2.3 Quadratic Forms. We represent quadratic forms in Gaussian variables via parti- &i

tioned Wishart matrices. Suppose that ..Y(y) = N,(p, ;); consider quadratic forms -

['4Ly, ... y'Ay] such that {A S S,; I 5j:5 r}; identify the joint distribution of +d

Lz , , z,']' on R.P as N,,(O, I), where L; = A)' 2y; 1 _5j _ r), Q = [9', ... Q,']' and -

{0= " ; I j ] r); and write re S; in partitioned form as F = [.,"2 ,A'2]. If
t on/
lty Codes

.1 and/or
Lush. Special.



Iy= _zz, then . V(W) - W(1, 1, 00'). Partitioning W= ['j' conformably with

. ,.']' shows that [ ' v ... y'A,y] may be represented equivalently as

,./z,] and [tr LV1, ... , trLyJ].

Generally [trLW, .... , trW,,] are quadratic forms in jointly Gaussian variables. For if

W= Y'Y with Y(f)f = N,,Qf, I, x Z), then (W) = W,(n, Z, 0) with 0 = M'AJ. Par-

titioning the typical row of Y as y' = [y,,., y' ] such that y E RP) with p, + + p, = p,

and thus Y= [Y1 ... Y] with ( eF,.,.P; I _<j ] r}, we infer that fH L=X Ey,y, I <j< r},

so that {trW, x 2.Y_,,; 1 Sj S r} are quadratic forms in jointly Gaussian variables.

More general forms {trVjjB; 1 <j < r} with (Bj e S;; 1 <j r}, are also quadratic

forms in jointly Gaussian variables because (trL~jB, = F B y0; 1 <j S r}. The trans-

formation Y - YB', with B'=Diag#!, .... ,Bi2), shows that YB' has the distribution

.Y(YB') = N ( LB',, x BIB'), and thus V - Z'Z, with Z =YB', has .(V) =

IV'(n, BLB', B9B'). Partitioning V = [1,] conformably with kV = [Vj] shows that

{tr!jj = trWj?,; I <j 5 r) are positive semidefinite quadratic forms in Gaussian variables.
so that {B , .... B,} may be absorbed into parameters of the Wishart distribution. In partic-

ular, the case n = I yields the forms U'1 ~v , . Y,'#,y,] in y [y, ,... ,y, ]' on jRP as before.

Representations in all these cases can be given in terms of standardized variables.

Specifically, the quadratic forms [Y'4 ..... y'A,y] in y e RP, with . (y) = N,(11 ), become

. , Bz] with {1J - 1/2Att2; 1 <j < and z = -1/2 such that .i'(z) Np(6, 4)
with 0 = 1-12ji. The further transformation z - P'j = y,, where P, is an orthogonal matrix

chosen to diagonalize 1111A11 2 
---, P'Z 2AJ 2P = Ap = Diag(6),1 ...., 6), yields equivalent

forms

Q'4y = z'. = 4) Auj; 1 <j< r) (2.1)

in the Gaussian vector u= [u' ... , y',]' on R'. Here .Y(u) = N,,(-y, ) with y =

[y, y,]' such that {y = P)P;-1/2; 1 :j5 r), and in partitioned form -

e S;,. Other cases may be treated similarly.

2.4 A Limit Rule. The following lemma is basic, where 4DLz) denotes the
p-dimensional Gaussian cdf with moments to be specified, and Z' denotes the random di-

agonal matrix Z' = Diag (Z,', ..... Z,'.

LEMMA 1. Let (Z.; N = 1, 2, ... } be a sequence of random diagonal (p x p) matrires

having nonzero means E(ZN) = MN and the diagonal matrix -:1 containing variances only,

and let Y. = il'( , - N) be such that (i) lim .(Y,) = 4 (y) and (ii) lir A ' .v- 0. If

W, ) = Diag (Z,. ,ZP,), then for eve ? Eaje (0,1]; 1 j p} we have lim (UVk))
- (b,(w).



Proof. Let A = Diag (e, ... ,); write Z =':'J', + M1~; and note on dropping subscripts

that Z' = M'L + A!-1'). Expanding each element of (I + M-:- Y)" in its binomial series,

using hypothesis (ii) for N sufficiently large and the assumption that i e (0, 1], gives

YZ + ,Y f + AM-'-=-Y+ o(.11-D._Y). (2.2)

On combining expressions and reinstating subscripts, we have

(2N - 4 ,v) = &VN N.KN + o(MA, £-N2,'). (2.3)

The lemma now follows from hypothesis (i) on taking limits in (2.3), where it is seen that

4; asymptotically is linear in the limiting Gaussian matrix Y',, and where an additional

standardization may be used if needed to secure a proper limit for .'(WA{)).

3. NORMALIZING TRANSFORMATIONS

We seek normalizing transformations {Q, - (QJ)'; 1 Sj < r) for standardized quad-

ratic forms in jointly Gaussian variables. From Section 2.3 it suffices to consider

[U1/vO,..., U,]vO,], where {L( = trilK,; 1 j1 r), such that Y(lK) = W,(v, L, Q) and

{E(trJ§) = v0,: 1 sj < r). We first evaluate joint cumulants of [U1,..., U,] from their cgf,'

we next convert cumulants to moments; and we then expand typical moments of

{V = (Uj/v0).,; 1 <j< r} to terms of required order in v. We finally choose {a), ... ), c,) so

as to accelerate the convergence of certain moment sequences to those of jointly Gaussian

variables. We outline these steps in the sections following, deferring further details to Ap-

pendix A.

3.1 The Joint Moments. Starting with the joint cif of IV= [l with argument

Te S, (cf 121) and expanding its cgfas in Il l. we write the joint cgf of [U1 ... , U,], with

argument t = [ts, ... , ,]', as

)u) = v isf-s-'tr[ (T0)s'-1 T0(Z + sfl)] (3.1)
s=1

where £ = v-'0 and T, = Diag (tlp .... , t,4). The joint cumulant K,1 ,, of order s =

s, + -'" + s,, is the coefficient of ie J... t,'/s ! ... s,! in the power series (3. 1). To simplify no-

tation, partition W = [W ~,j, T, [I,] and L2 = [(,] conformably; let 0, tr(Z,, + 9,,) and

w,, - tr ;,, + sfl,,) for 1 <sj< r, define

as(i i2ii 3 ... iiJ1 = trl.i 1 i, I ... 1/,1 + s;l ,) (3.2)
1,2- 23 ""

I 4



where s' = s - 1 and s = 1, 2, ... and write 3(Niii) = a3(j2i3), for example. The joint

cumulants K, ... ,, of [U1, ..... U], of orders I < s < 4, are summarized in Table 1 using the

symmetry of 2 and Q as in Appendix A.

TABLE 1. Typical cumulants K,, . of [I ,..., U.] of order s, 1 < s < 4.

S .. ,. Coefficient of i'tP ... tF/s,! ... s,!

1 t v6i

2 12 2vw,2
2 1, ti 2vo2(ij2i)
3 1,, 8vw,3

3 t tj 8v[03 ('Pi 3) + 2a3(i3j2i)]/3
3 t, 8v[o3(j2 k2 ) + t 3(ikj2 t) + o3(jik

2 ]J)]/3
4 t 48vw 44
4 t7t" 2 4v[o4 (i 1) + a(ij2'3)]

4 tS, t2  8v[2o 4(i4ti) + 2c,(Uji 2j2i) + o4(i ") + 04(ji4j)]

4 tttk 8v[ 4(i3j2k 2") + o,(i3k2j 2i) + o4Qj2t2k 2)
+ a(j~k2i3) + a,(ji4k 2j) + r(ik2 i2j2i)]

Moments of [U,..., U,] are computed from Table 1 using known relations between

moments and cumulants as in Appendix Table Al; see 16], for example. These computa-

tions give typical joint moments of orders 1 < s < 4 as summarized in Table 2, and other

moments follow similarly.

TABLE 2. Typical joint moments of [U, U2, U3] of order s, 1 < s < 4.

s Symbol Expression

I Ploo vol

2 JU200 2vw,2

2 Pilo 2voa(1221)

3 1300 8vw 3

3 [210 8y3as(12213) + 20(13221)]/3
3 Pill 8v[03(122321) + as(13221) + a3(21322)]13
4 JU0 48vw 4, + 12v0W2

4 AND 24v[4(152 l) + a4(12213)] + 12v2w12a2(122 1)

4 P0 8v[2r4(132'l) + 204(12212221) + a(124 13) + o4(2123)]
+ 4vko, 2w 22 + 8v 2 or(12 2I)

4 A211 {8v[r4(1322321) + a4(1332221) + o,(12212321)]
+ 04(1223211) + 04(214322) + C413211221)

+ 4v2wu,2o 2(
2 322) + 8v2 C( 1221)02(1321))

3.2 The Transformations. In what follows suppose that - = o(v) as v - co, and

conside 'he standardized variables [U/vO,..., U,/vO,] with {v0 = E(U); 1 :5 < r} to en-



sure a proper limit. We establish in Theorem I that [(U,/vO) " , ... (L,/vO,) '] are

asymptotically Gaussian for every q e D(r).

THEOREM I. Suppose that .(W) = W,(v, ", (3) such that 0 = o(v) as v -- 00. Then the

variables [UJOvi, .... U,/v0], with {U = trW,; 1 <j r}, are asymptotically Gaussian as

v - oco, as are [(U,/vO,)'1, ... (U,/vO,)"] for ever' a D(r).

Proof. The variables W= Y' Y when standardized, and thus [U 1/vOj,..., U,/vO,] as mar-

ginals, are asymptotically Gaussian by central limit theory I111, verifying condition (i) of

Lemma 1 for Z, = Diag (U1/vOl,..., U,/vO,). To verify condition (ii), identify k1, and ,

as in Lemma I with N = v and observe from Table 1 that
lira MA 1-  Jim "n(2/v) 11 lDiag (y,,.... , 'r)=0 3)

where {y, = U,42 0;'; 1 j< r} and y, = o(1) because (O = o(v). Lemma 1 now asserts that

the transformations T(c_):{U/vO) --, (Lj/vO j)*, 1 <j< r} yield asymptotically Gaussian vari-

ables for every (a e (0,1]; 1 <1j< r}, which completes our proof.

It remains to examine certain moment sequences of [(U,/vO,)*, ... ,(U,/vO,)"], which

we now investigate. Letting {U = vO, + e,; 1 <j < r) and {j = (UlvO,)*j; I <j < r), we

evaluate the mixed moments

E(VSI ... Vs") = E [(I + ervO,)"" - 0 + er~vOr) ] (3.4)

on expanding each factor and finding expected values term-wise. For moments to third

order, it suffices to consider the case r= 3 and to use {, P3, y) in lieu of (0:, a 2' a3}. The

resulting expression is basic, namely,

1( 002 V C)o. o 0 oo l'+j+kn-io-jn-k rt .]k,
E( 1/",-V-, V V Y 1 0 23 "i'-'-e'je2e3) (3.5)

t=O j=O k=O

where (ar, b', cl} are binomial coetticients identified in Appendix A.

TABLE 3. Marginal moments of V, = (trW_,vOY) to terms of order o(v- 3).

Moment Expression*

l0 + (a(,102) + 20 +2/'
(2ol) 2"( -1)3

A'2O(a) (2'42) + ( 1 [4) + (3a - 5)01]
v61

3(a) 4a3 [203 + 3(a - 1)41]

00 - 1) ... (a - t); , = trZ.j'(X,, + sf,,)/tr(v,, + 1411).

6



To continue, identity moments about zero as ,,%,(af?,) E[liiV']'2 3,

Iia, fl, y) be the corresponding central moment; and let u,,(c, fl), o,,(fl, y) and A,0(a) be

typical marginal moments. We next compute (y'., (a, fl, y); r + s + t = II and

frst,(, P. y); 2 5 r + s + t < 3) to terms of order o(v- 3), applying expression (3.5) as often

as needed to known relations between central and noncentral moments and using entries

from Table 2. Moments of each one-dimensional marginal distribution are taken from 1 161

on replacing their 0, by our v6j, for example. With at0 = a(a - 1) ... (a - t) and

{4,, = o,1,/v0,; s = 2, 3,... ), these moments are given in Table 3 to terms of order O(V3) for

(U/vO,)', with corresponding expressions for (U21v0 2)0 and (U3/v0 3)'.

TABLE 4. Nonvanishing terms to order i +j < 4 and their coefficients in the expression
(A.6) for the joint moment pI,10(a, fl) of [VI, V2, V3].

)"' (6 0 )-  ab) [E(eie) - Eel)E(e )]

1 1 v-2 (O02) -
' 2va 2(12 2 1)

2 1 v- (002)- a(a - l)fl!2 8V[a3(12213) + 2a3(13221)]/3

1 2 v-3  (0,02)-, af/(fl - 1)/2 8v[a 3(21 223) + 2a3(23 12 2)]/3
2 2 v-4  (0202)-' a(a - l)fl(f - 1)/4 8v[K220 + va2(12 21)]
3 1 v-  (0~02)-  a(a - 1)(a - 2)fl/6 12v[2K3,0 + vw, 2a2(12 1)]
1 3 v-4 (0103)-' afi( - l)(fl - 2)16 12v[2K, 0 + vco2a 2(l2 I)]

TABLE 5. Nonvanishing terms to order i +j:5 4 and their coefficients in the expression
(A.7) for the joint moment i 2,0(a, fl) of (VI, V2, V].

h i j ('" )h.+ (O+'o)-' Coefficient [E(eI)E(eiej) - E(e')E(ej)E(ej)]
V I II

0 1 1 v-2 (062)-' 0 2vc2(121)
0 2 1 V-3 (0102)-' a 2fl Sv[a3(12213) + 2a3(13221)]/3
0 1 2 V-3 (0102)-' 0 8vEcr3(21223) + 2C3(23122)]/3

o 2 2 v- (062)- 2fi(f# - 1)/2 8v[K 220 + vo ,(1221)]

S3 1 v- (0312)-  fla2(a -1) 12v[s2K 31 o + vw0,a 2(l221)]

o I 3 v-4 (0606)-' 0 12vt[2KI30 + vw, 2a 2(l 20 2 )]

2 1 3 v- ( 0) -  -a (a-l)(3 4v ot(122l)

We summarize in Tables 4. 5 and 6 the computations needed for p,, 0(a, fl),

,4210 (a, f), and uII(a, fl, y) up to terms of order o(v-), where expressions for (K,,,) are

identified in Table 7. Details are given in Appendix A. The required partial sums for

{W,,A, fl, y)) are found from each table on ignoring the first two columns, next multiplying

the remaining expressions in each row, then summing these products over rows, and finally

collecting terms in powers of v-'.



TABLE 6. Nonvanishing terms to order i +j + k <_ 4 and their coefficients in the ex-
pression (A.8) for the joint moment/am~a, fl, y) of [V , V2 , ,'3]

ij k ( - ), (0"0.2 0)-_ ab I C(i,j, k)

I 1 1 v-3  (010203)-' afl 8v[a3(122321) + a3(132221) + c3(212322)]/3
21 11 v-4 (0f020) -  a - l)/y/2  8v-/ 211 + v02(1221)02(1321)]

**

1 21 v-4 (010210 3)
-  fl(fl - 1)y/2 8v[KI2 + v02(2l22)a2(2322)]

1 1 2 v4 (0t020 )-  afl,(y - 1)/2 8vjK,,2 + va,(3123)a2(3223)]

*C(i,j, k) is defined in expression (A.9).

*This expression derives from {8vKI, + 4v2w12Cr2(23 22) + 8v2
2(1221)a2(132 1) - 0-

(2vw 12)[2va2(2322)] - 0 + 0), for example.

TABLE 7. Identification of typical constants {K,,,}.

i j k Ki-,

3 1 0 a4(121) + 04(132 13)
2 2 0 2a4(13241) + 2o4(1221221) + a4(1241 3) + a4(2142)

2 1 1 [a4(1322321) + 4(132221) + C4(12212321)
+ a4(121321) + a4(214322) + a,(13211221)]

3.3 The Approximating Distribution. It remains to choose (a, P3, y}. As all mixed

central moments of [V, V23, V3] of order 3 vanish up to terms of order o(v - 2) (compare

Tables 5 and 6), we specifically choose (a, fl, y} so as to annihilate the leading term in ex-

pressions for each of A300(a), A0(fl), and A003(Y). The solution from Table 3 is

= I - 20,wO3/3wo2 , with similar expressions for #3 and y. For determining { a, ... ) ,} in

the general case, identical arguments yield

oc. = I - 20jWJ3J3aj)2 ; I <_ j <_ r. (3.6)

The foregoing developments support a Gaussian approximation to the joint distrib-

ution of [V, ... , V,]. Up to terms of order o(v-), the means u = [u .... , ,]' and dispersion

parameters _ = [ ,] of th'e approximating distribution are given in the following theorem;

expressions to order o(v - ) are available from Table 3 and Table 4.

THEOREM 2. To terms of order o(v-), parameters of the Gaussian approximation to the

joint distribution of [V,, ... , VJ, with {V, = (trWJ/vO,)'; 1 < r}, are pI [&at ... ,

and = [,], where

Aj = I + upJ2oj('J - 1)/vOJ; I - r r (3.7)

y = 2a, aj C2(i 2tlviOfj; 1 i, j5 r (3.8)

8



for every (al, e (0, 1]; 1 <j < r).

In summary, the joint distribution of [J.] is approximatcly Gaussian as indi-
cated. Equivalently, the variables

Z= '2O[(Uj/Oj)- 1 - 2a( j - l)/vO]](22 a))1/2; 1 <j < r (3.9)

may be taken to be approximately Gaussian having zero means, unit variances, and the
correlation matrix R = [pj], where

2 12 1/2r(3.10)Pi = a2( I)owi2 (oj2, _ i< < r(.0

from p, ,/ 2 and (u.8). To terms of order o(v-2 ), these correlations do not depend
on the particular choice for { ... ,

3.4 Some Special Cases. Special distributions merit further attention. As in Section
2.3, partition IV = [LVJ], ; = [;,k], and E) = A'M = [Q,] conformably; let
{). = tr®,j; I <j<r}; and suppose that (T-, = _/j;I <j r}. Then the marginal distrib-
ution of Uj = trWYj is noncentral chi-squared having vpj degrees of freedom and the
noncentrality parameter ;.; the corresponding central distribution of [trW,, ...., trL,,] has

been studied in I 101. We determine from (3.6) that

{aj = I - 2(pj + )j)(pj + 3).;) 3(p + 2.j)1 I ; < r}. (3.11)

For central distributions having (A, = 0; 1 <j <__ r}, this reduces to {. = 1/3; 1 <j: r). The
resulting transformation, [t,, ..... U,] - [(LU'/vp1) 3 .... ,(U,/vp,)113], is a multivariate exten-
sion of the Wilson-Ililferty 1321 transformation as applied to each variable. Up to terms
of order o(v-3), expressions for the means [u .... , p] and the dispersion parameters

- [tj] of the approximating Gaussian distribution are given by

tij= l- 2/9 vp, I 5j 5_r (3.12)

jj= 2 9vp; I lj < r (3.13)

2a2( 2')vij + 8a2(ij~t i2 2")- I/.p

+ 4 [ 2 1)-(12) +y) 0j. (3.14)v! 3 " 'i 1)1

The corresponding correlation matrix R = [p] has elements

a2(Wj20 4r2(ij2i)

Py 1 + 1/2 ( - (1/2)( -L + j i oi. (3.15)
AO /P1 /l/2 9vp i11 /2"

9



Some numerical studies are reported in the following section based on the foregoing results.

4. NUMERICAL STUDIES

Our Gaussian approximations apply to various joint distributions as described in

Section 2.3. Here we consider implementing these approximations, including a study of

their accuracy in selected cases.

4.1 A Monotone Property. Although Gaussian distributions are perhaps best known

among continuous multivariate distributions, even here available tables are limited in scope
by the number of parameters required. The following facts are useful.

Our approximation can be implemented using available tables and a result of Slepian

[311 which zxserts that if PR(. ) and Pr(.) are Gaussian measures having zero means, unit

variances, and correlation matrices R= [pJ and F = [yJ], respectively, such that

j <; pij; i<j< r), then

PR{XI < c1.  r < Cr) > Pr{Xi < C. Xr Cr) (4.1)

for any scalars (c, ... , c,). In the special case that [Z,, ... , Z,] are equicorrelated standard

Gaussian variables having the correlation parameter p, the cdf

Fp(c,... ,c) = Pp(Z1  c,... Zr 5 c) (4.2)

has been tabulated in [71 for various values of r, p and c. If we now take

p* = min{ p,,; I < i <j 5 r), Slepian's inequality assures that the Gaussian approximation

for [V,,..., V,] can be bounded below by F.(c, .... , c,). In the central case for which

= 0, we find that a 2(PIt) = tr1,T. > 0 and thus p * = 0 can serve as a lower bound.

4.2 Accuracy of the Approximation. We compare approximate with exact probabili-

ties using available tables or algorithms for the latter in selected cases. Two cases are of

interset, namely, (i) the bivariate central chi-squared distributions of [201 using an algorithm

developed in (151, and (ii) multivariate central chi-squared distributions studied in [22] and

tabulated in [211. In both studies the approximating Gaussian probabilities are taken di-

rectly from [71. To avoid interpolating in these tables, we choose values of r, c and p given

there, then refer to (3.9) to express the inequalities {Zj < c; 1 5j<5 r} equivalently as

{Uj,< c*; 1 r) to find upper limits for [U,... , U]. Similarly we solve expression

(3.15) with pj, = p in terms of p to find the parameters appropriate for the joint distribution

of [U, ... , U,]. Exact probabilities were computed in the first case using sufficient terms

of a series given in 115], and in the second case by interpolating in the tables of 1211. Details

follow.

10



Let v=l,r=2,p= 2n, Y_12=! ,, and 12:= TL. Then the joint pdf of

(Ul, = trLV1. U2 = tr j'2) is given in (201 as a series bilinear in the Laguerre polynorrials.

An algorithm provided in [151 was programmed and used to compute the probabilities

listed in Appendix Table B 1 for the cases {n = 1, 2, 3, 5, 15, 30 and 50). These are exact to

the number of decimals reported. Four conclusions are suggested, other factors remaining

constant. (i) For any n and T the error of approximation tends to decrease as the included

probability increases, i.e., as c and c* increase. In connection with statistical tests having

upper-tail rejection regions, this indicates that the approximation is best where it is needed

most. (ii) The error of approximation tends to decrease as n increases. This is indeed the

rationale for our approximation, which is here seen to be asymptotic in n even when

v = I in our earlier developments. (iii) The error of approximation tends to increase as -r

and thus p increase. (iv) The Gaussian approximations appear tenable over most of the

parameter values studied, especially in view of the fact that accuracy beyond the second

decimal is seldom required in practice.

For the case r = p and 0 = 0, the distribution of [U , ... , Ur] reduces to that of the

diagonal elements of a central Wishart matrix of order r having v degrees of freedom as in

[221. For the special case that v = I and 1= [%] is a correlation matrix with

equicorrelation parameter 6, extensive tables of this distribution are given in 1211. For

(r= 3,4, 6, 10) and various values for the parameters p and c of the approximating

Gaussian distributions, actual probabilities and their Gaussian approximations are given in

Table B2 of Appendix B. Exact probabilities were obtained from 1211 using a standard

two-dimensional interpolation procedure (cf. 1], p. 882) to interpolate with respect to c*

and 6. Several conclusions are suggested by the data in Table B2 and are supported by

other computations not reported here. Specifically, the error of approximation tends (i) to

increase as either r or p increases, and (ii) to diminish towards upper tails of the distrib-

ution. When p = r and v = 1, we accordingly recommend that use of the approximation

be restricted to upper tails only. Despite the fact that our developments rest heavily on

expressions asymptotic in v, our approximations fare surprisingly well in upper tails of the

distributions studied even when v = 1.

APPENDIX A

To supplement developments of Section 3, we consider first the joint cumulants and

then moments of [U,..., U,].

A.1 The Joint Cumulants. Suppose that .(UW) = W(n, Z, E)). The joint chf of If'

with symmetric argument T, as given in [21, yields the series expansion for its cgf as given

in [ lII in the :Xrm

|I



kw7) = v i s tr[ (.)s - IT(Z + s )] (A. 1)
3=1

where 11 = v-E). Standard arguments yield the joint marginal cgf of [U,..., LI] on setting
other arguments to zero in (A.1), giving (3.1). Letting G(s) = (T)'-'T0,( + sQ), we extract

the joint cumulant K5, ., as the coefficient of i' ... .'/s,! ... s,! in the series

u = vZ is- s-ftrG(s). (A.2)
S=1

Proceeding recursively, with To and 1 [ in partitioned form, we obtain

T -i . =1 UOtu2tai23 . t V (A .3)

where s' = s - 1 and the expression inside brackets is the typical (u,v) block of (TOM)' - .

Similarly the typical block of G(s), with u and v ranging from 1 to r, is

r r!Gu"(S) = Y- ... F- u uz,..tii2 t, + sp iv) (A .4)
'2 =1 i, =1

which, on summing u = v from 1 to r, yields

IrG(s) = tr[ (Toa)S-1T0(1 + sil)]
r r (A.5)

= ... il .. ti, tr[ Z Ij, .. ,i(l + sit]

Combining (A.5) and (A.2) yields the desired cumulants in terms of the parameters

{a = tr(;,j + £ ,); I <j < r}, (wf,,l <j <__ r, s = 1, 2, ... }, and {c,(i~i2i2i3 ... iiJ); s = 1, 2, ... ) as

defined in Section 3. 1. These are summarized in Table I to include cumulants of order s.

with I < s < 4. Standard relations between moments and cumulants, as listed in Table A 1,
give values reported in Table 2.

TABLE A l. Relationships between typical central and noncentral moments and cumulants
of orders=s,+ s2 + s3, ls<4.

s Relationship

11 K100
2 < s s 3 I15,523 = K,1 ,2 ,3

4 MW = K,00 + 3K200
4 11310 =K310 + 3

K 200 K 110

4 P122 = K:22o + X20oK0 20 + 2 K2,10

4 jU21 = K211 + K,2 oKOt1 + 2 K11 0 K 01

12



A.2 Expansions for Moments of [ 1 ',..., 1,]. Beginning with (3.4), we expand terms
appearing there in their binomial series to obtain expression (3.5), where (a,, b', c, are

binomial coefficients given by
al = ra(ra - 1) ... (rat - i +l)i

bJ = sfl(sfl - 1)... (sfl -j + 1)/j!

ck = ty(ty - 1)... (ty - k + 1)/k!

For mixed moments of order two, repeated use of (3.5) in the expression

'- ' A'010 gives

E Y- V 1 )'i i bjA(i,f) (A .6)
1=0 j=0

where A(i,j) = [E(eiei) - E(el)E(ej)]. Similarly, from the identity P2o =  10 -2 1'%o

+ 2(A'00 )2 v'010 -ju2o 10 and (3.5), we determine that

. 2 i0(, )X ( E )__ O7'O~i-j(a7 - 2a1,)bIB(O' i,j)

i=0 j=0 -11II (A.7)
-2 h++OhiOaa J B (h , i,J)

h=1 1-=0 j=0

where B(h, i,f) = E(e,)[E(e~ej) - E(ei)E(ej)]. Finally, the identity p,,, = ylj " ,'ol jo
oA01 A "0 A ,01 + 2tA'o0 tio A'o, after lengthy reduction yields

II (at, fl,)-- ) 12 kaYl012u3 'ijickC,, k) (A.8)

1=0 j=0 k=0

where

C(i,j, k)= [E(ele/e3) - E(eje)E(e') - E(e,)E(ejek)

- E(eje])E(e3) + 2E(ei)E(eJ)E(ek)]. (.9)

Expansions (A.6), (A.7) and (A.8) may be truncated to approximate those moments

to terms of specified order in v. It is required to compute a sufficient number of terms using

expressions for E(efeye3) from Table 3 as central moments for [Vi, U2, U.]. Observe that

{E(ej) = 0; 1 5j< 3}; thus expressions for p,13(a, P), 210(L,13) and Prn(a, , ) simplify

somewhat. Specifically, A(ij) = 0 = B(O, ij) if either i = 0 or j = 0; B(1, ij) = 0 for all i

andj; and C(i,j, k) = 0 if either i = 0, j = 0 or k = 0. Using these facts and properties of

the binomial coefficients, we summarize in Tables 4, 5 and 6 the computations needed for

p'i0(a, fl), i210(a, 1), and fl13, y) up to terms of order o(v-3 ), where the quantities {K,,,)

are identified in Table 7.
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APPENDIX B

TABLE BI. Exact probabilities for bivariate X2 distributions having n decrees of freedom.
together with the Gaussian approximation* (A) having parameters c and p.

n
p c 1 2 3 5 15 30 50 A*

0.1 -2.0 .0000 .0001 .0004 .0005 .0007 .0008 .0008 .0009
0.1 -1.0 .0197 .0277 .0290 .0296 .0303 .0305 .0307 .0313
0.1 0.0 .2736 .2704 .2688 .2674 .2663 .2661 .2660 .2659
0.1 1.0 .7154 .7145 .7144 .7144 .7145 .7145 .7145 .7140
0.1 2.0 .9542 .9552 .9555 .9556 .9556 .9555 .9555 .9554
0.1 3.0 .9977 .9976 .9976 .9975 .9974 .9974 .9973 .9973

0.2 -2.0 .0000 .0002 .0004 .0007 .0010 .0011 .0012 .0014
0.2 -1.0 .0215 .0311 .0331 .0344 .0360 .0366 .0369 .0381
0.2 0.0 .2897 .2869 .2853 .2838 .2825 .2822 .2821 .2820
0.2 1.0 .7276 .7247 .7238 .7231 .7223 .7220 .7218 .7208
0.2 2.0 .9558 .9564 .9565 .9565 .9563 .9562 .9561 .9559
0.2 3.0 .9977 .9977 .9976 .9976 .9974 .9974 .9974 .9973

0.4 -2.0 .0000 .0002 .0007 .0012 .0020 .0023 .0024 .0029
0.4 -1.0 .0257 .0401 .0440 .0470 .0501 .0511 .0517 .0536
0.4 0.0 .3236 .3221 .3202 .3183 .3163 .3159 .3157 .3155
0.4 1.0 .7489 .7444 .7426 .7411 .7392 .7384 .7380 .7362
0.4 2.0 .9590 .9590 .9589 .9587 ,9583 .9580 .9579 .9574
0.4 3.0 .9978 .9978 .9977 .9976 .9975 .9974 .9974 .9973

0.6 -2.0 .0000 .0003 .0011 .0023 .0040 .0045 .0048 .0055
0.6 -1.0 .0321 .0543 .0606 .0649 .0687 .0699 .0705 .0725
0.6 0.0 .3623 .3609 .3585 .3561 .3535 .3529 .3527 .3524
0.6 1.0 .7690 .7645 .7626 .7608 .7585 .7576 .7571 .7552
0.6 2.0 .9624 .9623 .9620 .9617 .9611 .9608 .9606 .9600
0.6 3.0 .9980 .9979 .9978 .9978 .9976 .9975 .9975 .9974

0.7 -2.0 .0000 .0004 .0016 .0034 .0056 .0063 .0066 .0074
0.7 -1.0 .0372 .0650 .0723 .0768 .0804 .0815 .0820 .0840
0.7 0.0 .3844 .3824 .3798 .3772 .3746 .3740 .3737 .3734
0.7 1.0 .7794 .7755 .7737 .7721 .7699 .7690 .7685 .7667
0.7 2.0 .9643 .9642 .9640 .9637 .9630 .9627 .9625 .9619
0.7 3.0 .9981 .9980 .9979 .9979 .9977 .9976 .9976 .9975

*Approximate values are Fp(c, c) = P,(Z, c, Z 2 5 c) from [71.
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TABLE B2. Exact (E) and approximate* (A) probabilities for an r-dimensional X2 distrib-
ution having v = I deaees of freedom.

C
0.0 1.0 2.0 3.0

0 F A ,t F .I A
r=3

0.1 .1525 .1489 .6194 .6106 .9343 .9343 .9966 .9960
0.2 .1741 .1731 .6451 .6263 .9383 .9357 .9967 .9960
0.4 .2220 .2232 .6876 .6597 .9455 .9393 .9970 .9961
0.6 .2810 .2786 .7249 .6972 .9525 .9459 .9973 .9963

r=4
0.1 .0868 .0871 .5413 .5259 .9158 .9140 .9955 .9946
0.2 .1077 .1130 .5794 .5506 .9226 .9166 .9957 .9947
0.4 .1581 .1692 .6406 .6007 .9341 .9233 .9962 .9948
0.6 .2267 .2334 .6922 .6539 .9447 .9338 .9967 .9953

r=6
0.1 .0293 .0331 .4215 .3972 .8824 .8756 .9933 .9920
0.2 .0434 .0551 .4791 .4373 .8953 .8814 .9938 .9921
0.4 .0851 .1100 .5705 .5144 .9155 .8958 .9947 .9925
0.6 .1569 .1800 .6450 .5919 .9325 .9139 .9958 .9934

r= 10
0.1 .0037 .0066 .2683 .2404 .8258 .8065 .9893 .9867
0.2 .0079 .0184 .3469 .2983 .8515 .S202 .9903 .9870
0.4 .0277 .0605 .4780 .4072 .8876 .8507 .9924 .9881
0.6 .0822 .1281 .5853 .5146 .9154 .8838 .9943 .9902

*Approximate values are F,(c, ..., c) = P,(Z :< c,... Z, <_ c) from 17].
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